
Hughes Applied Information Systems
Landover, Maryland

430-TP-002-001

PDPS Data Processing Prototype
Phase 1 Report

Technical Paper

Technical Paper--Not intended for formal review or
government approval.

November 1994

Prepared Under Contract NAS5-60000

RESPONSIBLE ENGINEER

J. Martin /s/ 12/14/94

Jolyon Martin, PDPS Scientist / Engineer Date
EOSDIS Core System Project

SUBMITTED BY

Parag N. Ambardekar 12/14/94

Parag Ambardekar, PDPS Manager Date
EOSDIS Core System Project

This page intentionally left blank.

iii 430-TP-002-001

Abstract

We have successfully achieved the targets for the first phase of the data processing prototype.
This development represents a generic, stand-alone processing environment using the SDS
design concepts for data processing. The prototype has been demonstrated using real processing
algorithms from the pathfinder activities both as heritage algorithms and as encapsulated within
the SDP Toolkit. The primary purpose of this report is to evaluate the prototype after the first
phase and discuss issues raised within the work.

Keywords: PDPS, Data Processing, Prototype, Queuing

iv 430-TP-002-001

This page intentionally left blank.

v 430-TP-002-001

Contents

Abstract

1. Introduction

1.1 Overview .. 1

1.1.1 Phase 1: Proof of Concept ... 1

1.1.2 Phase 2: Data Processing Issues.. 1

1.1.3 Phase 3: Iteration for End-to-End Prototype ... 2

1.2 Organization ... 2

1.3 Acknowledgments .. 3

2. Software Overview

2.1 Design Overview.. 4

2.2 PGE scripts ... 6

2.3 EOSL CHAINS .. 6

2.4 GUI Overview .. 8

2.5 DQS Queuing Software ... 9

3. Hardware Overview

4. Chains Interface Evaluation

4.1 Evaluation ... 12

4.2 Re-use potential... 12

5. Queuing Services Evaluation

5.1 Standard Queuing Services ... 13

vi 430-TP-002-001

5.2 Queue Services Evaluation Criteria .. 13

5.2.1 Functional Criteria .. 14

5.2.2 Software Criteria ... 15

5.2.3 Other Criteria ... 15

5.3 DQS Evaluation .. 16

5.3.1 Functional Criteria .. 16

5.3.2 Software Criteria ... 16

5.3.3 Other Criteria .. 17

5.3.4 Summary ... 17

6. Prototype Issues

6.1 Introduction ... 18

6.2 Issue: Toolkit Interface via Processing Script... 18

6.3 Issue: Data Processing Request Information .. 19

6.4 Issue: Resource Model and Resource Management ... 19

6.5 Issue: Data Staging / Predictive Staging ... 20

6.6 Issue : QA.. 20

6.7 Issue : Script Languages .. 21

6.8 Issue : Process Statusing .. 21

6.9 Issue: Checkpointing ... 22

6.10 Issue: Science Software Execution Issues ... 22

References

vii 430-TP-002-001

This page intentionally left blank.

1 430-TP-002-001

1. Introduction

1.1 Overview

This report presents the results and issues arising from the first phase of the data processing
prototype. The broad aims for the data processing prototype have been advertised as follows:

• to verify SDS concept

• to furnish requirements / design information

• to support SDP toolkit development

• to provide early opportunity for community feedback

• to support end-to-end ‘push’-side prototyping (longer term)

The prototype has been split into phases to allow an incremental approach to the development
with the opportunity for review and redirection after each phase. The planning of the prototype
was originally split into two phases, a proof of concept, followed by an iteration, intended to
support any ECS ‘end-to-end prototyping’ activities. In order to better interface with the overall
ECS project schedule, and the schedule of other prototype components that could collaborate in
an end-to-end prototype, a three phased approach is now envisaged:

1.1.1 Phase 1: Proof of Concept

Scope

• manage, queue, execute data processing requests at a provider site.

• support process monitoring / control by operations staff

Drivers

• generate a generic solution for a data processing environment

• configurable to any processing chain

• provide standalone environment by integrating (C)OTS and heritage software.

Schedule

• 8/94 to 11/94

1.1.2 Phase 2: Data Processing Issues

Scope

• The proposed targets of this phase are to investigate a number of technical issues
arising from the prototype (identified in chapter 6). The output from this phase will
provide detailed information for the PDR activities.

2 430-TP-002-001

Schedule

• 12/94 to 2/95

1.1.3 Phase 3: Iteration for End-to-End Prototype

Scope

• The proposed targets of this phase are to address the interfaces required to support an
end-to-end prototype in collaboration with other prototype activities, e.g. planning
and data server prototypes if possible.

Schedule

• 3/95 to 5/95

We have successfully achieved the targets for the first phase in developing a generic, stand-alone
processing environment using the SDS design concepts for data processing. The prototype has
been demonstrated using real processing algorithms from the pathfinder activities [ref. 1,2] (both
as heritage algorithms and using the SDP Toolkit). The output of this first phase is being used to
feed PDPS requirements and design as well as providing a base level system to be used in the
future phases of prototype.

The primary purpose of this report is to evaluate the prototype after the first phase and discuss
issues raised within the work.

1.2 Organization

As a guide to the rest of this report:

Chapter 2: Software Overview, presents an overview of the software components of the
prototype and the mapping of these components to the SDS service classes. The information
here summarizes the more detailed design notes presented in the prototype preliminary design
document [ref. 8].

Chapter 3: Hardware Overview, presents an overview of the hardware configuration used for
the prototype.

Chapter 4: Chains Interface Evaluation , discusses the chains GUI interface and observations
made during preliminary demonstrations. The further development and re-use of this component
are also discussed.

Chapter 5: Queuing Service Evaluation, discusses the queuing services utilized in the
prototype. The experience of having worked with DQS within the prototype is used to generate
some evaluation criteria for this category of services.

3 430-TP-002-001

Chapter 6: Prototype Issues, discusses various issues that have been raised during the
prototype. The present approach to the issues within the prototype is discussed, and follow-up
plans are presented

1.3 Acknowledgments

The Authors of this report; Jolyon Martin and Simon Tackley, would especially like to thank the
following people for their assistance during the first phase of prototype:

- Narayan Prasad and Merik Chmielowski (ECS) for providing SDP Toolkit versions of
science algorithms for demonstrating and testing the data processing prototype.

- Mary James and the AVHRR Pathfinder Team (GSFC) for providing operations
information for the AVHRR Pathfinder algorithm [ref. 3].

- DQS development staff from Florida State University for support of Distributed Queuing
System.

Questions regarding technical information contained within this Paper should be addressed to the
following ECS contacts:

• ECS Contacts

– Jolyon Martin, PDPS Scientist / Engineer, (301) 925 0436, jolyonm@eos.hitc.com

– Simon Tackley, PDPS Scientist / Engineer, (301) 925 0462, stackley@eos.hitc.com

4 430-TP-002-001

2. Software Overview

This section presents an overview of the software within the Data Processing subsystem Phase 1
prototype.

2.1 Design Overview

The software components of the phase 1 prototype have been generated using both COTS and
Heritage code. Heritage libraries developed by EOSL for processing control applications have
been used to develop an application called CHAINS. This forms the front end of the system,
allowing entry of processing request data and monitoring of process execution through a GUI.
The CHAINS application interfaces to a distributed queuing package. The queuing package used
in the prototype is the Distributed Queuing System DQS [ref. 4]. This package comprises of two
basic services to a) manage and queue processing requests (DQS Master) and b) execute them on
relevant machines (DQS Exec). This is summarized in Figure 1.

DQS Exec DQS Exec

Algorithm

CHAINS GUI

DQS Exec

AlgorithmAlgorithm

DQS Master

Figure 1: Software Components Overview

The mapping of software to the SDS Service Classes is described in detail in the preliminary
design documentation for the prototype [ref. 8]. The mapping is summarized in Figure 2.

5 430-TP-002-001

CHAINS GUI DQS Master

DQS Exec

Executable
Process

PGE Script

Process
Queueing
Service

Process
Execution
Service

Resource
Management

Process
Management
Service

Figure 2: Service Class mapping for the Data Processing Prototype

Detailed design for the data processing environment is contained in on-line design
documentation1. The following selections provide a summary of the components in the
prototype.

1 An HTML preliminary design document is accessible from the SDPS Prototype page within the EDHS

WWW document server.

6 430-TP-002-001

2.2 PGE scripts

The basic unit which is queued and executed in the prototype is a PGE script. This is very
typical for most queuing packages. Some queuing systems require the script to be specified in a
given language (e.g. JCL in Control-M). DQS allows most standard script languages to be used.
Directives for the queuing services are frequently specified within the script (comment lines
containing resource requirements are an example of this within DQS).

The PGE scripts have to contain the control information necessary for the PGEs to execute - i.e.
the Process Control information as accessed by the SDP Toolkit, together with any
environmental variables etc. The PGE scripts are generated within the CHAINS software upon
reception of a Data Processing Request and sent to DQS for execution. The responsibility of the
process management service in the prototype is to take the processing parameters etc. which are
part of the data processing request, and to use these to qualify a template script. A template
script is set up for each processing algorithm. In this first phase of prototype the Data Processing
Requests are entered manually via a GUI (to qualify the template script).

Using a script as the scheduled unit has been found to be a very flexible mechanism; pre-
processing, post processing, error recovery steps can be included in the script. As the operations
of the processing become better understood the processing scripts can be expanded with ease.

2.3 EOSL CHAINS

The EOSL CHAINS software consists of a set of libraries for controlling and monitoring
algorithm execution. Interface is via a GUI. Effort has gone in during the Phase 1 prototyping to
provide API interfaces also, both for portability reasons and to support the longer term objective
of an end-to-end infrastructure prototype. Within the Phase 1 prototype it performs the roles of

- generating Data Processing Requests (in place of Planning subsystem)

- handling and processing Data Processing Requests as though it were the Process
Management Service Class

- monitoring the execution of resulting PGEs.

The CHAINS software handles chains of PGEs. An algorithm chain is comprised of a set of 1
or more PGEs. Chain types are defined in simple ASCII templates. The software allows loading
and execution of multiple chain types.

In terms of content, the CHAINS software consists internally of a number of libraries, namely:

- Finite State machine library

- Local process management library

- Queued process management library

- Display library

- Run library

7 430-TP-002-001

- Script editor library

- Mime library

- Support tools library.

The finite state machine library handles the status of the various elements of the chain. The
PGEs can currently be processed locally or via the distributed queuing system; the chain
execution logic is different in the two cases. The local process management module and the
queued process management module handle the submission of PGEs for execution. The
interface between the CHAINS software and the queuing system is through high level interfaces
via a service layer, hence reducing coupling between the packages and allowing easy
substitution of queuing packages at a later date.

The display library creates a graphic representation of the algorithm chain, with each PGE
visualized as a datastore, a controller and a PGE object. The controller is in the visual form of a
traffic light, and allows the operator to start, hold, release and cancel the PGE. The default
presentation of the chain is as a linear chain of PGEs; however it is possible to view the
dependencies within a chain by moving to a split view, which positions the graphical objects
relevant to their dependencies. Basic status information (Unstarted / Queued / Executing /
Completed / Error) is shown for all PGEs.

The management of chains of PGEs is handled by the run library, which controls their loading
and causes their display by the display module.

The processing scripts which encapsulate PGEs are created from script templates, using a value-
substitution tool, the Script Editor. These scripts contain information such as data filenames and
directories, processing parameters, log file locations etc. A script template is an ASCII text
containing variable markers, which are replaced with the values received in the data processing
requests. These templates are currently seen as an output of the AI&T process. The Script
Editor module provides both API and GUI interfaces, to allow automation in future phases of
prototyping. Facilities are provided for the Operator to be made aware of unqualified values
within the scripts and to edit and view values as part of both the data processing request entry
and validation processes. The Script Editor is designed in such a way as to enable easy re-use.

Facilities for viewing PGE input and output data are included. This function utilizes the mime
library, which automatically matches viewers to file types based on file extensions, using the
same type of technology applied by more advanced E-mail tools and the Mosaic internet tool.

The mime library is also utilized within the Support tools module for viewing Help files. Help
files are currently attached both to the CHAINS software and to individual PGEs. A log file is
also attached to the CHAINS interface and may be viewed and printed. A queue monitoring tool
is included as part of the Support tools module, as are tools for viewing and editing the
algorithm processing scripts directly. Information about old runs may be loaded, to allow the
operator to view information from previous operator sessions.

Each of these libraries is described in more detail in the design documentation.

8 430-TP-002-001

2.4 GUI Overview

The front end interface to the prototype is provided by the CHAINS software. As described in
the software overview this interface has been developed from a set of heritage libraries
(originally used to support graphical configuration of processing SAR data). A snapshot view of
the GUI is shown below, however the GUI interface is best seen “in real life” rather than
described in this report.

Figure 3. Snapshot of the CHAINS GUI

The following list summarizes some of the features presented by the GUI, and the capabilities
that these features provide to operators monitoring and controlling the processing.

• Generic configuration of multiple run types: templates are created to describe chains of
processing, with complex dependencies between steps (PGEs) in the chain:

• Local or Distributed (Queued) Processing: the choice of processing locally to the host of
the GUI or distributed within a heterogeneous clustered workstation environment

• Graphical Representation of PGE: status monitoring of the PGE as an icon within the
chain, with the capabilities for the operator view / manipulate the associated data objects
with the PGE, for example:

9 430-TP-002-001

- PGE Help - to view associated help documentation of the PGE

- Set Parameters - an interface to set processing parameters for the PGE

- Edit/View Script - the ability to edit / view the processing script of a PGE

- View Input/Output Data - to view the various data products of the PGE

- View Log - to view the processing log for the PGE

- Skip Module - to miss a step in the processing chain

- Traffic Lights - to control the data flow within the processing chain

• Status Monitoring: Processing log records the events within the data processing
environment, dynamic display of the allocation of processing requests to resources and
pending queued data processing requests.

For a more complete description of the features of the GUI see the on-line help page.

2.5 DQS Queuing Software

The DQS package comprises a manager service, DQS Master, which handles accepting and
distributing processes, and an execution service DQS Exec, an instantiation of which runs on
each processing resource.

The submission of jobs to processing resources managed by DQS is based on resource matching
and load balancing. DQS has a mechanism known as queue complexes whereby abstract
attributes are attached to a resource. The semantics of these attributes are fairly simple; there are
three possibilities:

attribute

attribute = string

attribute = value

These are used to express the capabilities of a resource: e.g.

architecture = sgi

memory = 64

disk = 1000

pvm

matlab

Then jobs are dispatched to the relevant machine based on their specification of resource
requirements e.g.

architecture.eq.hp

memory.gt.32

10 430-TP-002-001

disk.gt.100

pvm

A simple load balancing mechanism is used to ensure that machines are utilized according to
their processing loads. A five minute average of the processing load (as measured by %
utilization of the processor capability) is used to balance processing loads. The software
performing the load averaging is based on software provided by the GNU foundation.

11 430-TP-002-001

3. Hardware Overview

The Data Processing subsystem will support a heterogeneous processing environment, and
hence the DP prototype has been developed in a similar environment.

A small number of distributed workstations were set up to be managed within DQS. Three
different UNIX platforms have been included to verify heterogeneous operation. The hardware
is illustrated in Figure 4.

OSPREY
SunSparc10
Solaris
CHAINS
DQS Master

SPARROW
HP 735
HP-UX
DQS Exec

ORIOLE
HP 735
HP-UX
DQS Exec

PARROT
SGI R4000
IRIX
DQS Exec

Figure 4. Hardware Overview

The DQS Master and CHAINS interface were installed onto a machine named "osprey", and
three workstations set up a processing resources ("sparrow", "oriole", "parrot"). The machine
named "parrot" was given a "QA" attribute to verify the use of arbitrary attributes in determining
the allocation of processing resources.

The choice of hardware used in the prototype was entirely arbitrary and should not be assigned
any significance, beyond its heterogeneous nature. The CHAINS software was installed on
"osprey" since the MOTIF graphics libraries and development environment required were
available on this machine. The DQS master process was installed on the same machine because
of its close interface with the CHAINS software.

The DQS package has been ported to a large number of UNIX platforms, hence allowing a
widely heterogeneous processing environment to be supported. Within the ECS workstation
environment DQS has been built and run on the following classes of platform:

• DEC, IBM, SGI, SUN (solaris and sun-os 4.x), HP

12 430-TP-002-001

4. Chains Interface Evaluation

4.1 Evaluation

Preliminary demonstrations of the GUI have identified that the overall CHAINS approach is
considered as ideal during the early stages of algorithm operations, especially during AI&T and
operational testing. The general response to the prototype has been very positive, the ability to
view the progress of data processing chains, manage the control flow, view intermediate data
from the GUI are considered essential functions for routine operations.

The evaluations thus far have identified a number of features that should be made available
(either in the final system design or in iterations of the prototype):

An overall summary display of all the runs at the processing site would be a necessary addition
for monitoring the routine operations at a DAAC, (with the ability to navigate from the
summarized run to the CHAIN view currently implemented for error investigation).

Another point for consideration is the alternate views on the processing given from the planning
sub-system and from the aspect of resource management. It is not entirely clear how these will
compliment / supplement the CHAINS type display. The planning sub-system will contain a
view of the active plan of data processing, and the status of the processing against that plan. This
is typically a higher level summary view of the data processing activities. The resource
management subsystem will typically contain a GUI to all the resources at a processing site, and
show the load of processing on the resources. The CHAINS display is a good model for the
capabilities required in the data processing environment, there is however a valid concern as to
how this interface would interface with the other views on processing.

A useful enhancement to the CHAINS view that has been suggested is that as well as identifying
the PGE’s being used in the chain, a summary of the data would also be useful.

Other early evaluation comments have already been included in the GUI these included

• PGE Help

• Process Log viewing

4.2 Re-use potential

In order to be capable of advancing to support an end-to-end prototype, the operator interface to
setting up processing requests, i.e. manually entering processing parameters etc. has to be
supplemented by a software interface for the planning sub-system. At this point it would seem
most reasonable to split the CHAINS program into an interface component and a true service
component. This split was anticipated in the design of the software enhancement in phase 1, and
the coupling of the GUI components and service components are designed to minimize the
modifications that would be required during this split.

13 430-TP-002-001

5. Queuing Services Evaluation

There are a large number of queuing systems, available as COTS or freeware, providing similar
sets of features and functions. The processing prototype uses the Distributed Queuing System
(DQS) to provide queuing services to distribute and manage processing on the workstation
cluster. This chapter describes the basic functions of queuing packages, and from the experience
of the prototype, presents a candidate list of evaluation criteria for other queuing systems. An
evaluation of the applicability of DQS as a solution for the ECS queuing service is also
presented.

5.1 Standard Queuing Services

Many of the queuing packages share a common lineage to the Network Queuing System (NQS)
[ref. 4]. This package has in some ways defined the fundamental services required / expected
from queuing packages. The POSIX standard P1003.2d (presently draft in status) presents an
effort to standardize the interfaces to these queuing services [ref. 5]. The POSIX standard
defines a number of requests for obtaining services from queuing (or batch) packages. By
standardizing the requests in a client, server framework it should be possible for queuing services
to interoperate. The general philosophy behind the standard is to permit the vendor to implement
the mechanism for managing the processing jobs etc. in the way most suited to their platform.

It remains to be seen whether the various vendors / developers of queuing packages will sign up
to any standards. There are candidate packages being developed to the standard, e.g. Portable
Batch System PBS [ref. 6], and indications that other packages are using the standard as a guide
for newly developed feature, but the goal of interoperability seems to be fairly distant at present.

Within the prototype the interfaces are encapsulated as methods of the PGE object, (queue, hold,
release etc.). The precise semantics of the interface are then hidden from the majority of the
application code, in this way it should be possible to plug and evaluate with other applications.

5.2 Queue Services Evaluation Criteria

The report “A Comparison of Queuing, Cluster and Distributed Computing Systems” [ref. 4]
contains a set of evaluation criteria for this class of packages, not all of these criteria however are
applicable for the ECS environment. For example many packages contain features for
monitoring user activity on the distributed workstations, and can suspend queued processing
when a user (for example) logs into the machines console. This type of feature is not strictly
necessary for the ECS environment where resources will generally be dedicated to processing
tasks. The following is a list of evaluation criteria is built from experience with the phase 1
prototype, along with some general observations.

14 430-TP-002-001

5.2.1 Functional Criteria

1 Standard Services: The standard set of services described in the POSIX standard give a
good indication of required interfaces for the queuing services. These interfaces are:

qalter - alter the attributes of a job

qdel - delete job

qhold - hold a job

qmove - move a job

qmsg - send message to a job

qrerun - rerun a job

qrls - release a job

qselect - select a job

qsig - signal a job

qstat - show status of job

qsub - submit a job

Queuing packages do not always present these services in the same way, however these
POSIX capabilities indicate most of the required functions

2 Job Dependencies: The queuing services for the data processing environment require
mechanisms to specify dependencies between processing jobs.

3 Job Priorities: The queuing services for the data processing environment require
mechanisms for specifying relative priorities between processing jobs.

4 Job Dispatching: Job dispatching algorithms within the queuing services are typically
based on resource matching and load balancing.

a Resource Matching: The queuing services should be able to both specify the resource
for processing explicitly as well as matching processing job resource requirements to
the available resources in the data processing environment.

b Load Balancing: It is anticipated that the ECS resources will be dedicated to
processing of single jobs at a time, however it is possible that resources could be
shared between concurrent processes (small ad-hoc jobs for example) and as such
queuing services should be aware of the relative loads of the processing resources in
order to submit processing jobs to the optimum resources.

5 Job Limits: The queuing services should be able to monitor processing jobs against
defined limits of resource usage so that jobs and have capabilities to manage these jobs in
a well defined manner when usage exceeds the limits.

6 Job Status: The queuing services should be able to report the status of processing jobs.
Typically there are several levels at which the reporting is required, status of the job

15 430-TP-002-001

within the queuing services (queued, waiting, running etc.) as well as status of the job
when processing.

7 Resource Reporting: The queuing services should be able to report the resource usage of
the processing job (to provide information for future planning of the processing).

8 Checkpointing: The support for checkpointing the processing jobs should be assessed.

9 Resource Scheduling: The support for resource scheduling within the queuing package
should be evaluated (the ability to look forward to prevent jobs being started on platforms
which are scheduled for down-time -- this is not a standard feature in most COTS
packages).

5.2.2 Software Criteria

10 Heterogeneity: The queuing package will have to run on all the heterogeneous platforms
which are required in the ECS.

11 Parallel Support: The level of support for parallel processing paradigms will have to be
evaluated if parallel processing paradigms are to be used in the ECS.

12 No Single point of failure: The safety features of the software should be evaluated,
typical packages contain no single point of failure, as well as well defined recovery
procedures following loss of processing resources etc.

13 Operator interface (GUI): The operator interface to the package is required for
administration of the queuing service. The features which are available from a GUI
should be evaluated.

14 API interfaces: The provision of different levels of access to the software should be
evaluated, three levels of interface are ideal: GUI, command-line and API, although all
three of these levels are not always required, depending on other support software in the
processing environment.

5.2.3 Other Criteria

There are a number of features that are frequently bundled together within queuing systems to
enable fuller management of the production environment. These features (or services) aren’t
necessarily required within the queuing system since they may be supplied by the management
infrastructure or other components of the ECS. However, these features should be evaluated in
addition in order to assess either how well the functions interface to the management functions,
or whether the packages functions could in fact supplant the other services.

15 Resource Monitoring: display of the processing resources usage and load on the
processing environment is frequently supported in the queuing packages.

16 Reporting: report generation of processing activities is also frequently supported in the
data processing packages.

16 Security: Many of the queuing packages contain security management functions, since
they often used in open environments that allow many users of a cluster of workstations
to submit processing jobs. Security administration is not part of the data processing

16 430-TP-002-001

requirements per-se since it is managed by the management services, however the
applicability of the security interfaces within the package should be matched against
those management requirements.

17 Accounting: Similarly to security, accounting often is a part of queuing packages.

18 Planning: The support for future planning of processing should be evaluated.

5.3 DQS Evaluation

5.3.1 Functional Criteria

DQS contains only the core services qsub, qdel, qstat at present. There are plans to implement
the other interfaces in later releases. The package supports job dependencies, but not priorities at
present (again there are future plans for priorities)

One of the major differences in various queuing packages is the resource management / resource
model capabilities of the package. The resource model within a queuing package is used to
manage how a job to be scheduled or dispatched onto an appropriate machine. In the SDS the
objects used to describe the resource matching were resource profiles describing the available
resources and the processing profile describing the resource requirements of a process.

This simple mechanism used in DQS for job submission (queue complexes, described in chapter
2) is quite robust, and offers a high degree of flexibility. The limitation of the mechanism is
that it doesn’t take into account the actual state of the resources and the resources are considered
static e.g. if a background process is actually using most of the available memory within a
machine the queuing services aren’t aware of this and will consequently start the process. Also
the static description of resource attributes allows the specification of how much disk is available
in total, but takes no account of the amount of data on the disk at any time. These limitations are
very common, and arise from the lack of support for resource management in a UNIX
environment. However, other solutions are available and clearly resource management is an
issue that has to be addressed more thoroughly in future studies.

Job limits, status , resource reporting and checkpointing are all possible in DQS. Resource
scheduling is not.

5.3.2 Software Criteria

DQS is available on a large number of workstation platforms, since there is a large user
community for the product, and since the software is essentially free and distributed with the
source the number of platforms being supported expands as new platforms are introduced.

DQS supports parallel execution of jobs on resources within the workstation cluster.

Duplicate master services can be run to avoid the single point of failure. Jobs which are
executing when one of the machines crash are lost, although the operator and originator of these
jobs are informed.

17 430-TP-002-001

DQS contains an GUI interface to the resources, although this interface was not found to be
particularly well implemented or suitable. There are plans to generate a better interface. No API
interfaces are available for the queuing services.

5.3.3 Other Criteria

Security and Accounting facilities are available within DQS, these have not been thoroughly
evaluated as part of this prototype since it is anticipated that these features will be supplied by
the management services in the final solution.

There is no facility for future planning of processing within the package.

5.3.4 Summary

In summary DQS is ideal in a smaller processing environment especially since it is relatively
light weight (no reliance on DBMS etc.) DQS could be used as a final solution for the queuing
services at a DAAC with a number of modifications, however it is anticipated that a more
complete set of services would be available from other COTS packages.

Prototyping with DQS has been useful since it gives a good indication of the capabilities of a
whole class of queuing packages. The software source is available and so detailed investigations
of the internal workings of this type of package has been possible. There is an initiative to
evaluate other COTS within the PDPS group, the experience from this prototype will be used in
that evaluation. The later phase may adopt another set of queuing services depending on the
precise aims of the prototype at that time.

18 430-TP-002-001

6. Prototype Issues

6.1 Introduction

A number of technical issues have arisen during the data processing prototype which either have
been addressed, or deferred to a later phase of the prototype. In general these issues are both
pertinent to the prototype and the final system. These issues are presented along with the current
prototype approach / assumptions for the issue along with any plans for further investigation.

6.2 Issue: Toolkit Interface via Processing Script

Description: The SDP toolkit takes as input Process Control information in the form of a PC
table. This forms the main interface to the PGE from the Data Processing subsystem. A simple
approach to providing this information to the toolkit, from the processing environment has been
implemented, this approach should be evaluated for adoption in PDPS design.

Current Approach: A processing script is used to encapsulate a PGE. Within this script PC
table information is defined and written to a file, the PC info file, when the script is executed.
The location of the file is also defined in the script, and set up as an environmental variable,
which the toolkit reads and uses to access the file. This method has been used to interface to
both the AVHRR pathfinder algorithm and the SSMI pathfinder, and is effective. The form of
the PC table entries is such that some items need to be predefined in the script template, e.g.. the
logical numbers of the items. An example template entry for an item in the PC file is shown here

echo "402|<@INPUT_FILE2=@>|<@INPUT_DIR=@>||||1" >> $PGS_PC_INFO_FILE

where the token <@INPUT_FILE2=@> is replaced by a filename when the script is qualified.
The variable PGS_PC_INFO_FILE has been set up to contain the PC info filename . Hence the
data

402|{filename}|{directory}||||1

is written into the PC info file in this example, and read by the Toolkit.

The approach used is quite generic and can be used to supply other information required in the
processing script such as environmental variables and resource requirements.

Approach/Follow Up: The method currently in use is sufficient to communicate the
information to the SDP Toolkit. The use of a flat file as the medium allows the storage of this
information in the data server as log information but is not necessarily the most efficient
technique. It may be necessary at a later date to communicate to the Toolkit via a database
instead. It is anticipated that the processing script can still be used to transfer the information in
that scenario.

Target Schedule: No further work will be carried out on the Toolkit Interface, unless particular
issues are raised through the integration of further scientific algorithms or through major changes
to the Toolkit design.

19 430-TP-002-001

6.3 Issue: Data Processing Request Information

Description: The Data Processing subsystem is responsible for managing, queuing and
executing Data Processing Requests. These will be sent by the planning subsystem Production
Management Service.

Current Approach: Data Processing Requests are entered via a GUI in the Phase 1 prototype.
Information contained in the request is substituted into the processing scripts that encapsulate the
PGEs, and hence is passed on to the PGE via the PC table and environmental variables and also
to the process queuing service. A GUI is provided to enable validation of DPRs by the operator.

The information within the DPR is expected to contain:

- Unique Run Identifier

- Input data identifiers: granule id, granule size and staging method -- it is anticipated that
this information may be presented as a URL for the data

- Output data identifiers: granule id and anticipated size

- Processing parameters

- Resource requirements: either specific information of precise processing resources, disks
to be used, or a more generic specification of the class of resources required

- Environmental variable values (as required by PGE)

The prototype allows the use of default values if information is not contained in the DPR.

Currently, the operator initiates chains of PGEs that are described in pre-defined templates,
rather than individual DPEs, and then validates/edits parameters for the individual PGEs.

Approach/Follow Up: An interface layer needs adding to the CHAINS software to allow API-
level input of Data Processing Requests. The software used to process the requests has been
designed in such a way as to provide APIs that may be used by that interface layer. The precise
definition of DPRs will need defining in collaboration with the Planning subsystem.

Target Schedule: Phase 3 of the prototype involves interfacing to the Planning subsystem
prototype. As part of this process the remaining issues over DPRs will be resolved.

6.4 Issue: Resource Model and Resource Management

Description: There are a number of alternate approaches to resource management. The data
processing prototype uses a simple abstract model of resources to base scheduling decisions to
put jobs on suitable machines (also using load usage statistics for the resources to perform simple
load balancing). The resource management task is one of the more complicated tasks within the
data processing environment.

Current Approach: The simple resource model within the prototype was described in chapter
3, the limitations of this resource model are that the actual usage of the resources is not
accounted for.

20 430-TP-002-001

Follow Up: It is proposed to study the resource management capabilities of other COTS
queuing packages, as well as obtaining a better understanding of what might be provided by the
management infrastructure. In addition to this, there are a interesting technologies emerging for
better management of resources from UNIX, such as in the Andrew File System (AFS) for
reserving disk space resources. The way that these technologies could impact the design of the
resource management task will be investigated.

Target Schedule: It is proposed that during Phase 2 these issues are studied further, with the
anticipation that further prototyping may be required during Phase 3.

6.5 Issue: Data Staging / Predictive Staging

Description: The SDS anticipates the need for predictive staging of data in the data processing
sub-system. The needs for predictive staging are still unclear, modeling and prototype results
will be required to validate the requirements. There are a number of alternatives for staging
management: from simple FIFO queues which ensure that the data are available for as long as
possible on the local disks, to more complex forward looking capabilities which anticipate which
data are required in the near future. Although predictive staging is unlikely to be required for
early releases of the ECS system the impact that this could have on the system design should be
understood at an earlier stage.

Current Approach: Within the current prototype data are staged as part of the processing
script. Data staging is currently achieved via various file transfer commands (ftp, cp, rcp etc.)
within a processing script.

Follow Up: It is proposed to investigate the different possibilities / architecture for data staging.
There are clearly interface issues with the resource management and data server sub-systems.

Schedule: It is proposed that within Phase 2 of the prototype these issues are studied, with the
anticipation of providing simulation / prototype components for data staging from archive in the
Phase 3 time frame.

6.6 Issue : QA

Description: The Data Processing environment should be capable of supporting QA operations.

Current Approach: Three categories of QA operation have currently been identified (ref. :
PDPS telecon, 11/18/94). These are

- In line QA - automated QA.

- SCF QA - off-line, at another site to the DPS

- DAAC manual QA - human-in-the-loop QA local to the DAAC.

The current design concept allows in-line QA to be handled as an ordinary PGE. However, it is
not clear whether SCF QA and DAAC manual QA should be handled this way. During Phase 1
of the prototype work was brought forward to verify that the X-display aspects of manual QA
could be handled by the Data Processing prototype.

21 430-TP-002-001

Approach / Follow Up: QA operations may well be carried out both independently of the
product processing chains and in-line to the chain. In both cases it is likely that they will add a
degree of conditionally to the control flows through the PGEs The Data Processing prototype
should address these conditionally aspects, which may also apply to other types of PGEs. In
addition it should address the resource assignment aspects relating to manual QA processes,
which may be of indeterminate duration. Furthermore, it should look at how SCF QA is
modeled.

Target Schedule: This issue will be addressed during Phase 2 of the Data Processing prototype.

6.7 Issue : Script Languages

There are a number of advanced scripting languages gaining a large popularity under UNIX,
e.g. Perl, Python Tcl. These are being used increasingly in developing high level applications
and may be requested by science groups for developing their algorithms. In addition, locally
developed scripting languages may be in use.

Current approach: Scripts are currently assumed to be UNIX.

Approach / Follow Up: There are a number of related issues that need should be addressed

- the level of support required from the processing environment to permit use of these
scripts

- toolkit compatibility issues

- what benefits the PDPS group could get from adopting one of these scripting languages
within the system design

Target Schedule : It is proposed that these issues will be addressed during Phase 2 of the DP
prototype.

6.8 Issue : Process Statusing

Description: Process status information must be available to the Data Processing subsystem
operator for monitoring purposes and also to external subsystems (such as the planning
subsystem) for progress monitoring.

Current Approach: Basic status information is gathered by continuous monitoring of queues
and processing resources which form the Process Queuing Service and Process Execution
Service. This provides information at a state level - i.e. unstarted, queued, processing,
complete, held, error or skipped, which is displayed on the operator GUI of the DP prototype.

Approach / Follow Up: The issues that should be addressed are

- methods for gaining more detailed status information

- use of status information for conditionally controlling the process flow

- toolkit issues relating to the need for status information

- provision of status information to other subsystems

22 430-TP-002-001

- possibilities for use of status information within resource monitoring, scheduling and
staging

Target Schedule: It is proposed to address these issues during phase 2 of the Data Processing
prototype.

6.9 Issue: Checkpointing

Description: Checkpointing is the ability to save processing results at intermediate points in the
processing cycle. Checkpointing is used for many purposes,

• to save intermediate results to permit restart from a further point in the processing

• to permit an algorithm to close down in an ordered close down

• new technologies are investigating architecture independent checkpointing the ability to
move processing from one machine to another (migratory load balancing).

Current Approach: Checkpointing has not been addressed in the prototype so far

Follow up: It is proposed to study the potential impact that supporting this type of feature would
have on the PDPS design

Target Schedule: Phase 3

6.10 Issue: Science Software Execution Issues

Description: What extra support is required from the queuing services for non-sequential
processing paradigms

Current Approach: DQS supports concurrent scheduling of algorithms on distributed
workstations.

Follow Up: A more detailed investigation is required to understand the impact of all the
processing paradigms within the science software execution prototype impact the requirements /
design of the PDPS. These impacts may be in terms of functions within the queuing / execution
service, or interfaces to packages required to support the processing paradigm (e.g. MPI, PVM,
DCE etc.), as well as impacts on the resource management requirements.

Target Schedule: Phase 3

AB-1 WBS-TP-xxx-yyy

References

1. Science Software Execution Prototype: Report 2: AVHRR Pathfinder. Narayan
Prasad (available via EDHS)

2. SDP Toolkit Implementation With Pathfinder SSM/I Precipitation Rate
Algorithm. Narayan Prasad (available via EDHS)

3. AVHRR Pathfinder Home Page (URL: http://www.xtreme.gsfc.nasa.gov/)

4. DQS Home Page (URL: http://www.scri.fsu.edu/~pasko/dqs.html)

5. A Comparison of Queuing, Cluster and Distributed Computing Systems - NASA
Technical Memorandum 109025 (revision 1) June 1994. J Kaplan and M Nelson.

6. Draft Standard for Information Technology - POSIX - Part 2: Shell and Utilities
-- Amendment: Batch Environment. IEEE P1003.2d / D12.2

7. Portable Batch System External Reference Specification: R Henderson et. al
NAS Systems Development Branch - NASA Ames Research Center

8. Data Processing Prototype - Preliminary Design Document. Jolyon Martin
(available via EDHS)

	1. Introduction
	1.1 Overview
	1.1.1 Phase 1: Proof of Concept
	1.1.2 Phase 2: Data Processing Issues
	1.1.3 Phase 3: Iteration for End-to-End Prototype

	1.2 Organization
	1.3 Acknowledgments

	2. Software Overview
	2.1 Design Overview
	2.2 PGE scripts
	2.3 EOSL CHAINS
	2.4 GUI Overview
	2.5 DQS Queuing Software

	3. Hardware Overview
	4. Chains Interface Evaluation
	4.1 Evaluation
	4.2 Re-use potential

	5. Queuing Services Evaluation
	5.1 Standard Queuing Services
	5.2 Queue Services Evaluation Criteria
	5.2.1 Functional Criteria
	5.2.2 Software Criteria
	5.2.3 Other Criteria

	5.3 DQS Evaluation
	5.3.1 Functional Criteria
	5.3.2 Software Criteria
	5.3.3 Other Criteria
	5.3.4 Summary

	6. Prototype Issues
	6.1 Introduction
	6.2 Issue: Toolkit Interface via Processing Script
	6.3 Issue: Data Processing Request Information
	6.4 Issue: Resouce Model and Resource Management
	6.5 Issue: Data Staging/Predictive Staging
	6.6 Issue: QA
	6.7 Issue: Script Languages
	6.8 Issue: Process Statusing
	6.9 Issue: Checkpointing
	6.10 Issue: Science Software Execution Issues
	Figure 1: Software Components Overview
	Figure 2: Service Class mapping for the Data Processing Prototype
	Figure 3: Snapshot of the CHAINS GUI
	Figure 4: Hardware Overview

